

A Novel Antenna Design for UHF RFID Tag on Metallic Objects

Youngman Um¹, Uisheon Kim¹, Wonmo Seong², and Jaehoon Choi¹

¹Department of Electrical and Computer Engineering, Hanyang University, Republic of Korea

²E.M.W. Antenna Co., Ltd., Gasan-dong, Geumcheon-gu, Seoul 459-2, Republic of Korea

Abstract— A novel microstrip patch RFID tag antenna with wideband characteristic is proposed. It has less sensitive characteristic against size of metallic object, wide impedance bandwidth and long reading distance. The antenna consists of shorting strip, open stubs, tag IC and radiating patch having I-shaped slits. The proposed antenna is located on the finite ground plane and is constructed on FR4 substrate ($\epsilon_r = 4.4$, $\tan \delta = 0.02$). Overall dimension of the antenna is 100 mm \times 26 mm \times 6 mm. The tag IC has input impedance of $43 - j800 \Omega$ at 915 MHz. The -3 dB impedance bandwidth is from 696 MHz to 978 MHz. When the antenna is placed in free space and mounted on 200 mm \times 200 mm, 400 mm \times 400 mm and 600 mm \times 600 mm metallic plates, the peak gains are 4.7 dBi, 2.4 dBi, 2.3 dBi and 1.7 dBi, respectively. The radiation efficiencies are 69%, 40%, 38% and 38%, respectively, and the maximum reading distances are 5.13 m, 6 m, 5.75 m and 4.75 m, respectively.

1. INTRODUCTION

Recently, radio frequency identification (RFID) in the UHF band has gained popularity in many applications, since it provided a broad readable range, fast reading speed, and large information storage capability. In RFID system, tags are usually attached to objects having various material properties. Among them, metallic objects strongly affect the performance of antenna including radiation efficiency, gain, etc.. Planar inverted-F and microstrip patch antennas have been proposed for RFID tag application. However, these antennas have narrow impedance bandwidth and resonant frequency can be easily shifted due to the characteristics of objects that tag antennas are attached to.

In this paper, a novel microstrip patch RFID tag antenna with wideband characteristic is proposed. It has a less sensitive characteristic against size of metallic object, wide impedance bandwidth and a long reading distance. The resonant frequency and impedance bandwidth can be controlled by adjusting the lengthes of I-shaped slits and open stubs, and a gap distance between the open stub and feed line. High radiation efficiency and peak gain are achieved by using shorting strip.

2. STRUCTURE AND DESIGN

The geometry of the proposed antenna is shown in Fig. 1. The antenna consists of shorting strip, open stubs, tag IC and radiating patch having I-shaped slits. The values of parameters are listed in Table 1. The width of open stubs and I-Shaped slits is 1 mm. The radiating patch is a metal plate with length L_2 and width W_1 . The length L_1 , L_2 and width W_1 are optimized to a tag chip with an impedance $Z_c = (43 - j800) \Omega$ at 915 MHz. It means that the load antenna impedance should be $43 + j800 \Omega$ for conjugate matching and to transmit the maximum power between the antenna and the microchip. The tag chip feed is placed at one end of the feed line, and the other end is terminated by shorting strip and ground. The radiating patch is constructed on FR4 substrate ($\epsilon_r = 4.4$, $\tan \delta = 0.02$) with thickness H . Thickness H is used to achieve a high gain and less

Table 1: Final design parameters (Unit: mm).

Parameters	Values	Parameters	Values
L_1	100	W_1	26
L_2	69	W_2	5.5
L_3	22	W_3	8
L_4	11	W_4	3.5
L_5	9.5	H	6

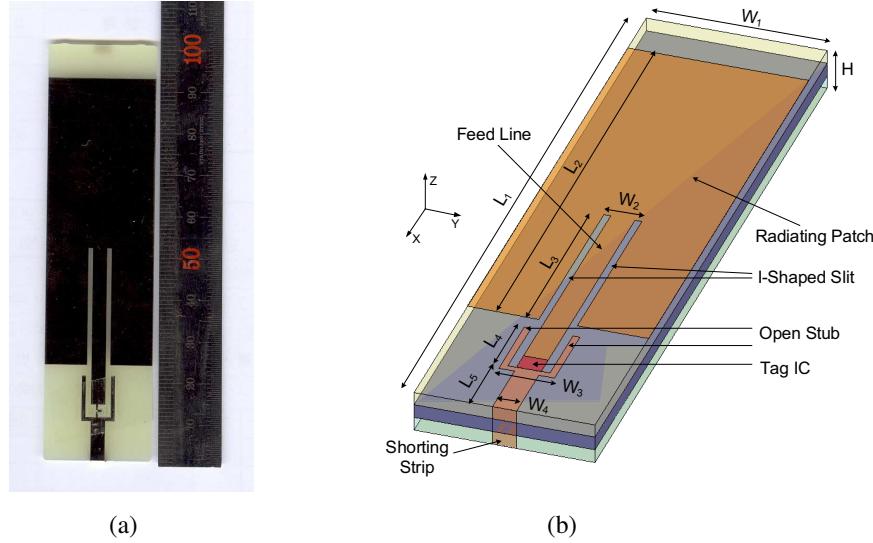


Figure 1: Proposed RFID tag antenna: (a) fabricated antenna, (b) 3D view.

sensitive characteristic against size of a metallic object. The microstrip feed line is inset into the patch. Generally, the edge-coupled feed suffers from a limitation of impedance mismatch because the input impedance of the patch at its radiating edge is very high compared to that of the feed line. Therefore, an inset microstrip feed line is used in radiating patch to mitigate this problem. The open stubs are used for impedance matching. Resonant frequency can be controlled by adjusting the gap length between feed line and open stub, and the length of open stub.

3. RESULTS AND MEASUREMENT

The antenna performance is analyzed by Ansoft HFSS simulator. Return loss, peak gain, radiation pattern, radiation efficiency and maximum reading distance are simulated and measured in free space, on 200 mm \times 200 mm, 400 mm \times 400 mm and 600 mm \times 600 mm metallic plates. The maximum reading distance is measured in RFID Test Bed, E.M.W Antenna Co., Ltd..

Figure 2 shows return loss characteristic of the antenna. The bandwidth is measured to be about 282 MHz (696 MHz \sim 978 MHz) which satisfies UHF band (908 MHz \sim 914 MHz) of RFID system. I-shaped slits and open stubs can control resonant frequency of antenna. Length of I-shaped slits and open stubs can be interpreted as series inductance. Therefore, the longer their lengths are, the lower resonant frequency of the antenna becomes. Fig. 3 shows radiation patterns. As listed in Table 2, radiation patterns, peak gains and radiation efficiencies are less sensitive against metallic sizes.

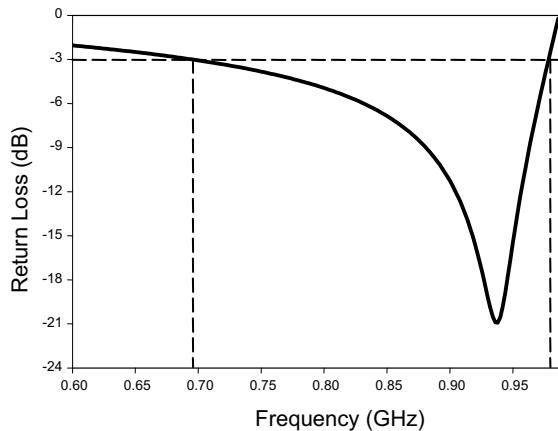


Figure 2: Return loss characteristic.

The proposed antenna is combined with the commercial tag chip. Then, using the commercial

Table 2: Peak gain and radiation efficiency.

Metallic Plate Size	Free Space	200 mm×200 mm	400 mm×400 mm	600 mm×600 mm
Peak Gain (dBi)	4.7	2.4	2.3	1.7
Radiation Efficiency (%)	69	40	38	38

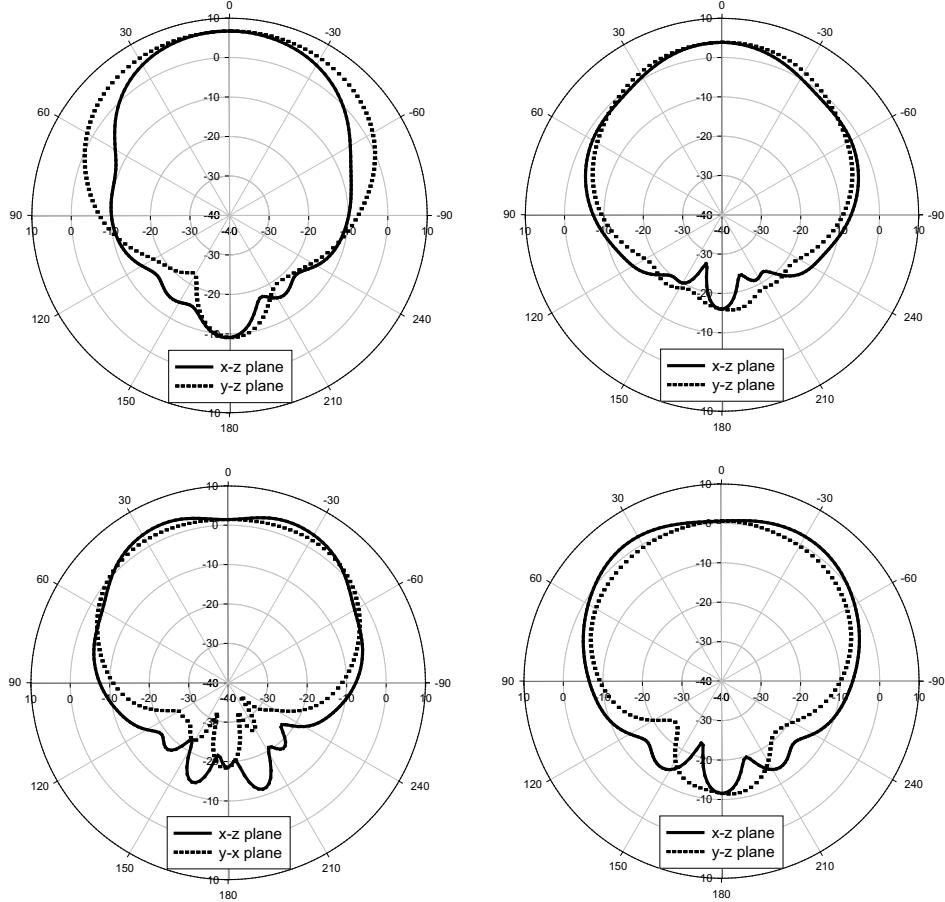


Figure 3: Radiation pattern at 910 MHz.

RFID reader, its performances are measured based on the back-scattering method in an RFID Test bed. The measurement setup consists of the transmission and receiving parts. The transmission part includes a computer, RFID reader (ALIEN, ALR-9800-KOR), reader antenna (EMW Antenna, FSDC-07) and variable attenuator. The minimum power signal from the reader is sent to wake up the tag. The reader output power is 32 dBm. The maximum reading distances of the proposed antenna are listed in Table 3.

Table 3: Measured maximum reading distance for metallic plate sizes (Unit: m).

	Sample 1	Sample 2	Average
Free Space	5	5.25	5.13
200 mm×200 mm	5.5	6.5	6
400 mm×400 mm	5.5	6	5.75
600 mm×600 mm	4.5	5	4.75

4. CONCLUSION AND FUTURE WORK

In this paper, a novel microstrip patch RFID tag antenna with wideband characteristic is proposed. It has a less sensitive characteristic against size of metallic objects, wide impedance bandwidth and a long reading distance. The performance of proposed antenna is not sensitive to the metallic size of object and can be applied to RFID systems whose tags are mounted on metallic objects. In the future, the height and size of the proposed antenna will be further reduced.

REFERENCES

1. Cho, C. H., H. S. Choo, and I. M. Park, "Design of novel RFID tag antennas for metallic objects," *Antennas and Propagation Society International Symposium 2006 IEEE*, 3245–3248, 2006.
2. Ukkonen, L., L. Sydanheirno, and M. Kivikoski, "A novel tag design using inverted-F antenna for radio frequency identification of metallic objects," *2004 IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communication*, 91–94, 26–27 Apr., 2004.
3. Kim, S. J., H. Rhyu, S. H. Baek, F. J. Harackiewicz, and B. J. Lee, "UHF Band RFID tag antenna with a symmetric structure mountable on metallic platforms," *Asia-Pacific Microwave Conference Proceedings*, 3–6, 2005.
4. Son, H. W., G. Y. Choi, and C. S. Pyo, "Design of wideband RFID tag antenna for metallic surfaces," *Electronics Letters*, Vol. 42, No. 5, 263–265, 2 March, 2006.
5. Ukkonen, L., L. Sydanheirno, and M. Kivikoski, "Effects of metallic plate size on the performance of microstrip patch-type tag antennas for passive RFID," *IEEE Antennas and Wireless Propagation Letters*, Vol. 4, 410–413, 2005.
6. Wong, K. L., *Compact and Broadband Microstrip Antennas*, 163–191, Wiley-Interscience, New York 2002.
7. Ramesh, G., B. Prakash, B. Inder, and I. Apisak, *Microstrip antenna Design Handbook*, 19–27, Artech House, 2001.

射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>